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Abstract. An algebraic solution of the RPA equations for nucleon re-interactions in the case of quasi-elastic
charged-current neutrino–nucleus scattering is presented. The Abelian algebra of the matrices allows us to
extract four independent corrections to the cross section separately. The results of numerical computations
are shown.

1 Introduction

A better theoretical understanding of nuclear effects in
neutrino–nucleus scattering is important in view of the
data analysis from new more precise neutrino experiments
such as K2K, MINOS, MiniBoone. The determination of
the parameters governing the neutrino oscillation phenom-
enon, in particular of θ13, requires improved knowledge of
the neutrino–nucleus cross sections [1]. In the above men-
tioned experiments the neutrino beam energy is of the or-
der of 1 GeV. A characteristic feature of neutrino–nucleus
reactions in this energy domain is the formation of res-
onances and subsequent pion production. However, the
quasi-elastic contribution is still important and its precise
determination is of interest.

Nuclear effects in the neutrino–nucleus interaction are
often evaluated in the framework of a Monte Carlo ap-
proach. Scattering is split into two steps. The neutrino
interacts first with a free nucleon; outgoing particles are
then subject to re-interactions inside the nucleus. In more
systematic theoretical approaches mean field theory with a
relativistic Fermi gas of protons and neutrons as a ground
state can serve as one of the techniques to provide a model
for the nucleus [2]. In its simplest version the nucleus forms
a sea of fermions with momentum uniformly distributed
inside the Fermi sphere. The effect of MFT is that one has
to substitute nucleon mass M by an effective mass M∗. It is
well known that for energies in the GeV range in the case of
the electron–nucleus scattering Fermi gas model with fine
tuned values of the Fermi momentum and effective mass
accounts for basic features of the dynamics [3]. More realis-
tically, nucleons interact with each other exchanging pions
and ρ mesons, and also short range correlations have to
be considered by introducing suitable contact interactions
terms [4]. In the ring approximation of the RPA approach a
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summation over all Feynman diagrams is substituted by a
sum of diagrams where only 1p-1h (one particle–one hole)
excitations are included [5]. In order to make the theory
better one should also consider elementary 2p-2h excita-
tions in order to enlarge the cross section in the so-called
“dip” region [6, 7]. It is however difficult to include this
contribution in the RPA scheme [8].

In this paper analytic expressions for four contributions
to RPA corrections are derived in the case of quasi-elastic
neutrino reactions. An algebra of matrices is introduced to
solve the Dyson equation. Results for separate contribu-
tions are presented. It is known [9] that RPA corrections
typically reduce the maximum in the energy transfer dif-
ferential cross section by a factor of about 10%. Our for-
malism when applied to the CC process is only expected
to reproduce these results. In particular we want to men-
tion here the paper [10]. We try to keep the same notation
in order to make a comparison easier. A first motivation
for the present study is to construct a general framework
in which a more detailed analysis of quasi-elastic CC pro-
cesses could be possible. One can evaluate the significance
of uncertainties in various parameters: nucleons’ form fac-
tors, coupling constants, effective mass etc. The second
motivation is that the same algebraic framework can be
applied to NC reactions and hopefully also (with necessary
modifications) to the ∆ excitation. In our RPA computa-
tions we keep a constant value for the Fermi momentum.
Also M∗ is assumed to be a function of Fermi momentum
only; thus it is a constant. Inclusion of local density effects
in the analytical framework is in principle possible but
rather complicated – a lot of manipulations with spherical
harmonics are necessary [7] with approximations difficult
to control. For all practical purposes it is sufficient to have
an exact cross section formula for a fixed value of Fermi
momentum (and M∗) since one can perform a numerical
integration over Fermi momenta with a distribution de-
fined by the density profile of the nucleus in question. Our
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Fig. 1. The basic diagram describing neutrino–nucleus in-
teraction. Scattering takes place on a single nucleon with a
definite momentum given by the Fermi gas distribution. In the
energy domain of a few GeV the effective four-Fermion vertex
provides an excellent approximation

algebraic scheme enables a rather simple computation of
both effects (RPA and local density) and this is the third
motivation for our work. We wish to mention that a similar
idea for solving the Dyson equation can be found in [11].

This paper is organized as follows. A short description
of the model, Feynman rules and the main technical tool -
algebra of matrices is given in Sect. 2. Explicit expressions
for RPA corrections are presented in Sect. 3. Section 4 con-
tains a discussion of results and also a comparison with
RPA computations done in the relativistic generalization
of the Marteau model [12]. There is a very nice agreement
between the two approaches. Some technical details of al-
gebraic computations are collected in the appendix. The
aim of this paper is to present the main features of this
approach. More details and discussion will be in our next
paper, which is now in preparation.

2 The formalism

We consider charged-current (CC) quasi-elastic neutrino–
nucleus scattering (Fig. 1). The model of the nucleus is
given by the mean field theory [2] (the nucleon mass be-
comes an effective mass M∗(kF)) with interactions due to
contact terms and exchange of pions and ρ mesons [4]. In a
first approximation the nucleus is treated as a relativistic
Fermi gas with Fermi momentum kF determined by the
nucleons’ density.

The elementary weak charged-current nucleon–nucleon
current is expressed by means of form factors [13]:

Γα(qµ) = F1(q2
µ)γα + F2(q2

µ)
iσανqν

2M
+ GA(q2

µ)γαγ5. (1)

We omit the Gp(qµ) term since its contribution to the
νe and νµ cross sections at Eν ∼ 1 GeV is negligible. It
can be put into our scheme if required with only minor
modifications.

The differential cross section (per nucleon) reads

d2σ

d|q|dq0
= −G2

Fcos2θc |q|
16π2ρFE2 Im (Lµ

νΠµ
ν) . (2)

νΓ

µΓ

p p+q

Fig. 2. Πµν
free

ρF = k3
F/3π2, and we assume the same values of the Fermi

momentum for neutrons and protons. Lµν is the leptonic
tensor:

Lµν = 8
(
kµk′

ν + k′
µkν − gµνkαk′α ± iεµναβk′αkβ

)
. (3)

The sign ± depends on the process considered (neu-
trino/antineutrino).

The polarization tensor Πµν is a basic object that con-
tains full information about nuclear effects. It is defined
as a chronological product of many body currents:

Πµν(q0, q) = −i
∫

d4xeiqαxα〈0|T (J µ(x)J ν(0)) |0〉. (4)

The |0〉 is the ground state of the nucleus described by
the Fermi gas model. The prescription for nuclear physics
[14] enables the evaluation of Πµν by means of the stan-
dard QFT techniques with modified (depending on kF)
progagator G(p).

2.1 Feynman rules

The polarization tensor is split into a “free” part and a
RPA correction:

Πµν = Πµν
free + ∆Πµν

RPA. (5)

The “free” tensor is given by a simple fermion loop (Fig. 2)
which is spanned between two vertices with form factor
insertions.

Πµν
free(q) (6)

= −i
∫

d4p

(2π)4
Tr (G(p + q)Γµ(q)G(p)Γ ν(−q)) ,

G(p) = (p/ + M∗) (7)

×
(

1
p2

α −M∗2 + iε
+

iπ
Ep

δ(p0 − Ep)θ(kF − p)
)

.

G(p) describes the propagation of a free fermion in the
Fermi sea.
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Fig. 3a–d. Diagrammatical definitions of Ππ,ρ. They are loops
with CC weak nucleon–nucleon current in one vertex and NNπ
or NNρ vertices
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Fig. 4. Following [10] we define the RPA propagator as a sum
over 1p-1h diagrams with external meson fields propagators

RPA corrections arise from the summation of an infi-
nite sum of 1p-1h contributions [5]. These corrections are
given by Feynman diagrams containing the π propagator
V µν , the ρ propagator Wµν and interaction vertices NNπ
as well as NNρ. The Landau–Migdal parameter g′ is put
together with a genuine pion propagator to form a rede-
fined pion “propagator” (for details see [10]).

In what follows in this section we do not write down
explicitly Lorentz indices. It will be understood that un-
less specified all the objects are 4×4 matrices with indices
( )µ

ν . We define the tensors Πρ and Ππ as loop diagrams
with a CC weak nucleon–nucleon current in one vertex
and NNρ or NNπ vertices (Fig. 3). Notice that contri-
butions from tensors given by Figs. 3a,b are equal. The
same applies to the contributions of Fig. 3c,d. This prop-
erty simplifies the algebraic form of the RPA corrections.

∆RPA is an 8× 8 matrix defined by an infinite series:

∆RPA = ∆0 + ∆0ΠG∆0 + ∆0ΠG∆0ΠG∆0 + ..., (8)

which is illustrated in Fig. 5. We defined two new tensors,
the 8 × 8 matrices ΠG and ∆0. Their definitions can be
simply understood in diagrammatical language (Fig. 6).

With all these definitions the formula (8) can be rewrit-
ten in the form of the Dyson equation (Fig. 7):

∆RPA = ∆0 + ∆0ΠG∆RPA. (9)

It is clear that RPA corrections to the polarization
propagator are given by ∆RPA multiplied from both sides

Fig. 5. The propagator RPA can be expressed as an infinite
sum

external π and ρ lines subtracted

Π G

∆ 0

Fig. 6. The tensors ΠG and D0

Fig. 7. Dyson equation for the RPA propagator
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Fig. 8. Diagrammatical explanation of RPA corrections to the
polarization propagator

by Πρ and Ππ;

∆ΠRPA(qµ) =
(

Πρ(qµ)
Ππ(qµ)

)
∆RPA(qµ)

(
Πρ(qµ)
Ππ(qµ)

)
. (10)

The diagrammatic explanation of this formula is pre-
sented in Fig. 8. Our strategy is to solve the equation for
∆RPA and then to obtain the expression for ∆ΠRPA.
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2.2 Algebraic properties of the polarization tensor

A coordinate system is chosen in which the four momentum
transfer reads

qµ = kµ − k′
µ = (q0, q, 0, 0). (11)

The Dyson equation is a 8 × 8 matrix equation. In order
to solve it we introduce 4× 4 matrices:

eL =




− q2

q2
µ

q0q
q2

µ
0 0

− q0q
q2

µ

q2
0

q2
µ

0 0

0 0 0 0
0 0 0 0


 , eT =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 ,

eA =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , eVA =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


 . (12)

They satisfy the matrix multiplication relations

eL eL = eL,

eL eT = 0 = eT eL,

eL eA = eL = eA eL,

eL eVA = 0 = eVA eL,

eT eT = eT,

eT eA = eT = eA eT,

eT eVA = eVA = eVA eT,

eA eA = eA,

eA eVA = eVA = eVA eA,

eVA eVA = eT. (13)

The polarization tensor must be a linear combination
of eL, eT, eA, eVA,

Π = ΠLeL + ΠTeT + ΠVAeVA + ΠAeA. (14)

This is clear since Π is given by a sum over Feynman
diagrams and each contribution is of this form due to the
fact that the algebra eL, eT, eVA, eA is closed under multi-
plication and all the building blocks are expressed in terms
of these four basic matrices. Consequently the cross section
has the form

d2σ

dq dq0
= −G2

Fcos2θc q

16π2ρFE2

× Im
(
LLΠL + LTΠT ± LVAΠVA + LAΠA) , (15)

where LL ≡ Lµ
νeL

µ
ν etc. Many authors, e.g. [10] call

the four contributions longitudinal, transverse, V-A, and
axial. This can cause some confusion because contributions
to the cross section are sometimes called after the spin–
isospin operators present in the nucleon–nucleon transition
current. We will return to this point in Sect. 4.

3 RPA corrections

A lot of simplifications come from the fact that ∆0 contains
only longitudinal, transverse and axial terms [10]. We have

∆0 =

(
W 0
0 V

)
(16)

=

(
WLeL + WTeT + WAeA 0

0 V LeL + V TeT + V AeA

)
.

W and V are

WL = WT = − q2
µ/m2

ρ

q2
µ −m2

ρ + iε
, (17)

WA =
q2
µ −m2

ρ

m2
ρ

1
q2
µ −m2

ρ + iε
, (18)

V L = V T = − q2
µ

q2
µ −m2

π + iε
, (19)

V A =
q2
µ

q2
µ −m2

π + iε
− g′. (20)

g′ is the Landau–Migdal parameter.
Also we have

Πρ = ΠL
ρ eL + ΠT

ρ eT + ΠVA
ρ eVA, (21)

Ππ = ΠL
π eL + ΠT

π eT + ΠVA
π eVA + ΠA

π eA. (22)

We find

ΠG =

(
Πρρ Πρπ

Ππρ Πππ

)
(23)

=

(
ΠL

ρρeL + ΠT
ρρeT ΠVA

ρπ eVA

ΠVA
ρπ eVA ΠL

ππeL + ΠT
ρρeT + ΠA

ρρeA

)
.

We introduce the general notation

∆RPA =

(
∆1 ∆2

∆3 ∆4

)
, (24)

∆i = ∆L
i eL + ∆T

i eT + ∆VA
i eVA + ∆A

i eA,

i = 1, 2, 3, 4.

The 8× 8 matrix equation (9) can be rewritten as a set of
four 4× 4 matrix equations:

∆1 = W + WΠρρ∆1 + WΠρπ∆3,

∆2 = WΠρρ∆2 + WΠρπ∆4,

∆3 = V Πρπ∆1 + V Πππ∆3,

∆4 = V + V Πρπ∆2 + V Πππ∆4. (25)
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Equations (25) are transformed to a set of algebraic
equations and solved in the appendix. We obtain a general
solution for ∆RPA:

∆RPA = (26)(
∆A

1 eA + ∆L
1 eL + ∆T

1 eT ∆VA
2 eVA

∆VA
3 eVA ∆A

4 eA + ∆L
4 eL + ∆T

4 eT

)
.

RPA corrections to the polarization tensor are

∆ΠL
RPA =

((
ΠL

π

)2
+ 2ΠL

π ΠA
π

) (
∆A

4 + ∆L
4
)

+
(
ΠA

π

)2
∆L

4 +
(
ΠL

ρ

)2 (
∆A

1 + ∆L
1
)
, (27)

∆ΠT
RPA =

((
ΠT

π

)2
+ 2ΠT

π ΠA
π +

(
ΠVA

π

)2) (
∆A

4 + ∆T
4
)

+
(
ΠA

π

)2
∆T

4

+
((

ΠT
ρ

)2
+
(
ΠVA

ρ

)2) (
∆T

1 + ∆A
1
)

(28)

+
(
ΠVA

ρ ΠT
π + ΠVA

ρ ΠA
π + ΠT

ρ ΠVA
π

)
× (∆VA

2 + ∆VA
3
)
,

∆ΠVA
RPA =

(
ΠT

ρ ΠT
π + ΠT

ρ ΠA
π + ΠVA

ρ ΠVA
π

) (
∆VA

2 + ∆VA
3
)

+2
(
∆T

1 + ∆A
1
)
ΠVA

ρ ΠT
ρ

+2
(
∆T

4 + ∆A
4
) (

ΠA
π + ΠT

π

)
ΠVA

π , (29)

∆ΠA
RPA =

(
ΠA

π

)2
∆A

4 . (30)

Expressions for ∆A
1 ... are written in the appendix.

4 Discussion

The numerical evaluation of RPA corrections to Πµν re-
quires knowledge of both real and imaginary parts of all
objects presented in (27)–(30). We get the necessary formu-
lae from [15]. With this input one can perform a numerical
analysis of our algebraic results.

We present some plots demonstrating the consistency
of our procedures. We compare the RPA corrections ob-
tained in our paper with those computed in a different ap-
proach. The approach we choose is based on the Marteau
model with some improvements [12]. The use of a rela-
tivistic generalization of the Lindhard function made the
kinematical regions of both models the same.

In the Marteau model three contributions to the cross
section are identified according to the spin–isospin opera-
tors present in the transition amplitude. To find a bridge
between two decompositions we observe that the hadronic
tensor components H00, H01, H10, H11 contribute only to
longitudinal and charge contributions (in the spin–isospin
nomenclature) while the remaining components contribute
only to the transverse part. This is strictly speaking true
in the approximation when the |p|

M (p is the target’s nu-
cleon momentum) terms are neglected in Hµν which is

valid within a few %. We decided therefore to single out
two contributions in both approaches and to call them in
order to avoid confusion: I and II. Contribution II is equiv-
alent to the sum of charge and longitudinal parts in the
Marteau approach, while contribution I is equivalent to
the transverse part.

The identification of the I and II parts in our approach
requires some algebra. We obtain

(LµνΠµν)I = LT
(
ΠT −ΠA

)
+ LVAΠVA, (31)

(LµνΠµν)II = LLΠL + (LA + LT) ΠA. (32)

In our numerical calculations we assumed the following val-
ues of parameters present in the theory: MA = 1.03 GeV,
the axial mass, standard values of the coupling constants
for pions and ρ mesons, the Landau–Migdal parameter
g′ = 0.7 except for two comparison plots (in [12] the
value g′ = 0.6 was assumed and we take the same value
in order to make the comparison consistent). The effec-
tive mass was calculated according to the self-consistency
equation of MFT theory [2]. It is assumed that the target
nucleus is oxygen 16O and that the Fermi momentum is
kF = 225 MeV. We get M∗ = 638 MeV.

In the Fig. 9 we compare predictions for the total cross
section in three cases:
(i) free Fermi gas with M∗ = 939 MeV,
(ii) RPA computations with M∗ = 939 MeV, and
(iii) RPA computations with M∗ = 638 MeV. The inclu-
sion of RPA correlations makes the cross section smaller.
In the third case the reduction of the cross section is more
significant for neutrino energies up to about 3 GeV.

In Figs. 10 and 11 we show the differential cross sections
in energy transfer for a neutrino energy of 1 GeV. As above
we distinguish two cases in which the effective mass is taken
either as the free mass of a nucleon or as 638 MeV. One
can see the typical expected behavior: in the RPA case the
quasi-elastic peak becomes reduced, but at larger values of
the energy transfer the effect of RPA is to slightly increase
the cross section. We notice that due to the effective mass
the kinematically allowed regions in the energy transfer
are in the two cases different.

In the last two figures we compare our differential cross
sections with predictions of the model described in [12]. A
good agreement between the influence of RPA corrections
in the two models is seen. The contribution I is dominant
in both cases. Differences between them are small. The
behavior of contribution II in both cases is similar. The
Marteau model gives rise to smaller contributions at an
energy transfer of ∼ 50 MeV and the whole contribution
becomes reduced by about 25%.

We conclude that our algebraic solution of RPA equa-
tions leads to modifications of the cross section similar
to other approaches. We cannot expect that the Marteau
model [12] can produce numerically identical results as it
is a hybrid model which combines a non-relativistic po-
tential approach with a relativistic Lindhard function. We
hope that our algebraic scheme will be useful in other cases
mentioned in the introduction.
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Fig. 9. Comparison of the computations of quasi-elastic neutrino total cross sections on oxygen and g′ = 0.7
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Appendix A

Equations (25) are rewritten as sixteen ones:

∆A
1 = WA,

∆A
2 = 0,

∆A
3 = V A∆A

3 ΠA
ππ,

∆A
4 = V A (1 + ∆A

4 ΠA
ππ

)
, (33)

∆L
1 = RL +

(
∆A

1 + ∆L
1
) (

WA + WL)ΠL
ρρ,

∆L
2 =

(
∆A

2 + ∆L
2
) (

WA + WL)ΠL
ρρ,

∆L
3 = ∆A

3
(
ΠA

ππV L + ΠL
ππV A + ΠL

ππV L)
+∆L

3
(
V A + V L) (ΠA

ππ + ΠL
ππ

)
,

∆L
4 = V L + ∆A

4
(
ΠA

ππV L + ΠL
ππV A + ΠL

ππV L)
+∆L

4
(
V A + V L) (ΠL

ππ + ΠA
ππ

)
, (34)

∆T
1 = WT +

(
∆A

1 + ∆T
1
)
ΠT

ρρ

(
WA + WT)

+∆VA
3 ΠVA

ρπ

(
WA + WT) ,

∆T
2 =

(
∆A

2 + ∆T
2
)
ΠT

ρρ

(
WA + WT)

+∆VA
4 ΠVA

ρπ

(
WA + WT) ,

∆T
3 = ∆VA

1 ΠVA
ρπ

(
V A + V T)

+∆T
3
(
ΠA

ππ + ΠT
ππ

) (
V A + V T)

+∆A
3
(
ΠA

ππV T + ΠT
ππV A + ΠT

ππV T) ,

∆T
4 = V T + ∆VA

2 ΠVA
ρπ

(
V A + V T)

+∆T
4
(
ΠT

ππ + ΠA
ππ

) (
V A + V T)

+∆A
4
(
ΠA

ππV T + ΠT
ππV A + ΠT

ππV T) , (35)

∆VA
1 =

(
∆VA

1 ΠT
ρρ + ∆A

3 ΠVA
ρπ + ∆T

3 ΠVA
ρπ

) (
WA + WT) ,

∆VA
2 = (∆VA

2 ΠT
ρρ + ∆A

4 ΠVA
ρπ + ∆T

4 ΠVA
ρπ )

(
WA + WT) ,

∆VA
3 =

(
∆A

1 ΠVA
ρπ + ∆T

1 ΠVA
ρπ + ∆VA

3 ΠA
ππ + ∆VA

3 ΠT
ππ

)
× (V A + V T),

∆VA
4 =

(
(∆A

2 + ∆T
2 )ΠVA

ρπ + ∆VA
4 ΠA

ππ + ∆VA
4 ΠT

ππ

)
× (V A + V T). (36)

We solve these equations sector-by-sector. Equations (33)
clearly lead to

∆A
1 = WA,

∆A
2 = 0,

∆A
3 = 0,

∆A
4 =

V A

1− V AΠA
ππ

. (37)
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To proceed it is convenient to define

RTA = WT + WA,

V TA = V T + V A,

V LA = V L + V A. (38)

Equations (34) contain only ∆A
j and ∆L

j components. We
obtain

∆L
1 =

WL + RLAΠL
ρρW

A

1−RLAΠL
ρρ

,

∆L
2 = 0,

∆L
3 = 0,

∆L
4 =

V L + V LAΠL
ππV A

(1− V AΠA
ππ) (1− V LA(ΠL

ππ + ΠA
ππ))

. (39)

∆T and ∆VA components mix among themselves but al-
ways in pairs:

∆T
1 ←→ ∆VA

3 ,

∆T
2 ←→ ∆VA

4 ,

∆T
3 ←→ ∆VA

1 ,

∆T
4 ←→ ∆VA

2 . (40)

We derive

∆T
1 (41)

=
[
1 − V TA(ΠA

ππ + ΠT
ππ)

] [
WT + WAWTAΠT

ρρ

]

[1 − V TA(ΠA
ππ + ΠT

ππ)]
[
1 − RTAΠT

ρρ

] − RTAV TA(ΠVA
ρπ )2

+
WARTAV TA(ΠVA

ρπ )2

[1 − V TA(ΠA
ππ + ΠT

ππ)]
[
1 − RTAΠT

ρρ

] − RTAV TA(ΠVA
ρπ )2

,

∆T
2 = 0,

∆T
3 = 0,

∆T
4 (42)

=
(1 − RTAΠT

ρρ)
(
V T + ∆A

4 (V TAΠT
ππ + V TΠA

ππ)
)

[1 − V TA (ΠA
ππ + ΠT

ππ)]
[
1 − RTAΠT

ρρ

] − V TARTA(ΠVA
ρπ )2

+
∆A

4 V TARTA(ΠVA
ρπ )2

[1 − V TA (ΠA
ππ + ΠT

ππ)]
[
1 − RTAΠT

ρρ

] − V TARTA(ΠVA
ρπ )2

,

∆VA
1 = 0,

∆VA
2 (43)

=
WATΠVA

ρπ (V T+(1−ΠππV A)∆A
4 )

1−WAT(ΠT
ρρ+V AT(ΠVA

ρπ )2)+V AT(ΠA
ππ+ΠT

ππ)(ΠT
ρρWAT−1) ,

∆VA
3 (44)

=
V ATWATΠVA

ρπ

1−WAT(ΠT
ρρ+V AT(ΠVA

ρπ )2)+V AT(ΠA
ππ+ΠT

ππ)(ΠT
ρρWAT−1) ,

∆VA
4 = 0.
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